Exercise 60

Find equations of the tangent line and normal line to the curve at the given point.

$$
x^{2}+4 x y+y^{2}=13, \quad(2,1)
$$

Solution

Take the derivative of both sides with respect to x.

$$
\begin{aligned}
\frac{d}{d x}\left(x^{2}+4 x y+y^{2}\right) & =\frac{d}{d x}(13) \\
\frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}(4 x y)+\frac{d}{d x}\left(y^{2}\right) & =0 \\
2 x+\left[\frac{d}{d x}(4 x)\right] y+4 x\left[\frac{d}{d x}(y)\right]+2 y \cdot \frac{d y}{d x} & =0 \\
2 x+(4) y+4 x\left(\frac{d y}{d x}\right)+2 y\left(\frac{d y}{d x}\right) & =0
\end{aligned}
$$

Solve for $d y / d x$.

$$
\begin{aligned}
4 x\left(\frac{d y}{d x}\right)+2 y\left(\frac{d y}{d x}\right) & =-2 x-4 y \\
(4 x+2 y) \frac{d y}{d x} & =-2 x-4 y \\
\frac{d y}{d x} & =\frac{-2 x-4 y}{4 x+2 y} \\
& =-\frac{x+2 y}{2 x+y}
\end{aligned}
$$

Plug in $x=2$ and $y=1$ to find the slope of the tangent line at the given point $(2,1)$. The slope of the normal line is the negative reciprocal.

$$
m_{\|}=-\frac{2+2(1)}{2(2)+1}=-\frac{4}{5} \quad \Rightarrow \quad m_{\perp}=\frac{5}{4}
$$

Use the point-slope formula with these slopes and the given point $(2,1)$ to get the equations of the tangent and normal lines.

$$
\begin{aligned}
y-1 & =-\frac{4}{5}(x-2) & y-1 & =\frac{5}{4}(x-2) \\
y-1 & =-\frac{4}{5} x+\frac{8}{5} & y-1 & =\frac{5}{4} x-\frac{5}{2} \\
y & =-\frac{4}{5} x+\frac{13}{5} & y & =\frac{5}{4} x-\frac{3}{2}
\end{aligned}
$$

Below is a graph of the curve and its tangent and normal lines at $(2,1)$.

